Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling
PBN-AR
Instytucja
Wydział Biologii i Biotechnologii (Uniwersytet Warmińsko-Mazurski w Olsztynie)
Informacje podstawowe
Główny język publikacji
en
Czasopismo
Acta Physiologiae Plantarum
ISSN
0137-5881
EISSN
1861-1664
Wydawca
SPRINGER HEIDELBERG
DOI
URL
Rok publikacji
2014
Numer zeszytu
Strony od-do
1771-1780
Numer tomu
36
Link do pełnego tekstu
Identyfikator DOI
Liczba arkuszy
Autorzy
Słowa kluczowe
en
Polar plants Caryophyllaceae Poaceae Carbohydrates Chilling
Streszczenia
Język
en
Treść
Four species of flowering plants comprising Arctic populations of Cerastium alpinum and Poa arctica var. vivipara and indigenous Antarctic species Colobanthus quitensis and Deschampsia antarctica were investigated. Plants derived from natural origins were grown in an experimental greenhouse in Poland (53?470N and 20?300E latitude). Plants for experiment were collected during spring of 2010. Soluble carbohydrates in the intact shoots of C. alpinum and C. quitensis, polar plants of the family Caryophyllaceae, and D. antarctica and P. arctica var. vivipara, representatives of the family Poaceae, were analyzed by gas chromatography, and their involvement in the plants’ response to chilling stress was examined. Plant tissues of the examined families growing in a greenhouse conditions (18–20 ?C, short day 10/14 h light/darkness) differed in the content and composition of soluble carbohydrates. In addition to common monosaccharides, myo-inositol and sucrose, Caryophyllaceae plants contained raffinose family oligosaccharides (RFOs), D-pinitol and mono-galactosyl pinitols. RFOs and D-pinitol were not detected in plants of the family Poaceae which contain 1-kestose, a specific tri-saccharide. The accumulation of significant quantities of sucrose in all investigated plants, RFOs in Caryophyllaceae plants and 1-kestose in Poaceae plants in response to chilling stress (4 ?C for 48 h with a long day photoperiod, 20/4 h) indicates that those compounds participate in the stress response. The common sugar accumulating in cold stress response and probably most important for chilling tolerance of four investigated plants species seems to be sucrose. On the other hand, the accumulation of above-mentioned carbohydrates during chilling stress can be a return to sugars metabolism, occurring in natural environmental conditions. No changes in D-pinitol concentrations were observed in the tissues of C. alpinum and C. quitensis plants subjected to both low and elevated temperatures, which probably rules out the protective effects of D-pinitol in response to cold stress
Cechy publikacji
ORIGINAL_ARTICLE
Inne
System-identifier
520197
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych