Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N
PBN-AR
Instytucja
Instytut Wysokich Ciśnień Polskiej Akademii Nauk
Informacje podstawowe
Główny język publikacji
angielski
Czasopismo
Journal of Applied Physics
ISSN
0021-8979
EISSN
1089-7550
Wydawca
AMER INST PHYSICS
DOI
URL
Rok publikacji
2016
Numer zeszytu
1
Strony od-do
015702
Numer tomu
120
Identyfikator DOI
Liczba arkuszy
1,7
Słowa kluczowe
angielski
Photoluminescence
Electric fields
Crystal structure
Electron gas
Transmission electron microscopy
Streszczenia
Język
angielski
Treść
Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain was below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.
Inne
System-identifier
PX-58c807b0d5de386883109382
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych