A compartment model of alveolar–capillary oxygen diffusion with ventilation–perfusion gradient and dynamics of air transport through the respiratory tract
PBN-AR
Instytucja
Wydział Elektrotechniki i Automatyki (Politechnika Gdańska)
Informacje podstawowe
Główny język publikacji
ENG
Czasopismo
COMPUTERS IN BIOLOGY AND MEDICINE
ISSN
0010-4825
EISSN
Wydawca
DOI
URL
Rok publikacji
2014
Numer zeszytu
Strony od-do
159-170
Numer tomu
51
Identyfikator DOI
Liczba arkuszy
Autorzy
(liczba autorów: 2)
Słowa kluczowe
COMPARTMENT MODEL
DIFFUSION
RESPIRATORYSYSTEM
SATURATION
VENTILATION–PERFUSION MISMATCH
Streszczenia
Język
Treść
This paper presents a model of alveolar–capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differentia equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation–perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar–capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level.
Inne
System-identifier
128184