GWAS risk factors in Parkinson's disease: LRRK2 coding variation and genetic interaction with PARK16
PBN-AR
Instytucja
Instytut Medycyny Doświadczalnej i Klinicznej im. Mirosława Mossakowskiego Polskiej Akademii Nauk
Informacje podstawowe
Główny język publikacji
en
Czasopismo
American journal of neurodegenerative disease
ISSN
2165-591X
EISSN
2165-591X
Wydawca
Madison, WI : e-Century Publishing Corporation
DOI
Rok publikacji
2013
Numer zeszytu
4
Strony od-do
287-299
Numer tomu
2
Identyfikator DOI
Liczba arkuszy
1,22
Słowa kluczowe
en
Association studies in genetics
Parkinson’s disease/Parkinsonism
Streszczenia
Język
en
Treść
Parkinson's disease (PD) is a multifactorial movement disorder characterized by progressive neurodegeneration. Genome-wide association studies (GWAS) have nominated over fifteen distinct loci associated with risk of PD, however the biological mechanisms by which these loci influence disease risk are mostly unknown. GWAS are only the first step in the identification of disease genes: the specific causal variants responsible for the risk within the associated loci and the interactions between them must be identified to fully comprehend their impact on the development of PD. In the present study, we first attempted to replicate the association signals of 17 PD GWAS loci in our series of 1381 patients with PD and 1328 controls. BST1, SNCA, HLA-DRA, CCDC62/HIP1R and MAPT all showed a significant association with PD under different models of inheritance and LRRK2 showed a suggestive association. We then examined the role of coding LRRK2 variants in the GWAS association signal for that gene. The previously identified LRRK2 risk mutant p.M1646T and protective haplotype p.N551K-R1398H-K1423K did not explain the association signal of LRRK2 in our series. Finally, we investigated the gene-gene interaction between PARK16 and LRRK2 that has previously been proposed. We observed no interaction between PARK16 and LRRK2 GWAS variants, but did observe a non-significant trend toward interaction between PARK16 and LRRK2 variants within the protective haplotype. Identification of causal variants and the interactions between them is the crucial next step in making biological sense of the massive amount of data generated by GWAS studies. Future studies combining larger sample sizes will undoubtedly shed light on the complex molecular interplay leading to the development of PD.
Cechy publikacji
ORIGINAL_ARTICLE
Inne
System-identifier
668673