A multi-scale molecular dynamics study of the assembly of micron-size supraparticles from 30 nm alkyl-coated nanoparticles
PBN-AR
Instytucja
Wydział Fizyki (Uniwersytet Warszawski)
Informacje podstawowe
Główny język publikacji
en
Czasopismo
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
ISSN
1463-9076
EISSN
Wydawca
ROYAL SOC CHEMISTRY
DOI
URL
Rok publikacji
2013
Numer zeszytu
21
Strony od-do
8132-8143
Numer tomu
15
Identyfikator DOI
Liczba arkuszy
Słowa kluczowe
en
VAN-DER-WAALS
GOLD NANOPARTICLES
ALKANETHIOLATE MONOLAYERS
COLLECTIVE PROPERTIES
SURFACE-CHEMISTRY
SELF-ORGANIZATION
NANOCRYSTALS
SIMULATION
FORCES
ARRAYS
Streszczenia
Język
en
Treść
Atomistic and meso scale computer simulations of nanoparticle aggregation are combined to describe the self-assembly of supraparticles in bulk and on surfaces under vacuum conditions. At the nano scale, atomic resolution molecular dynamics simulations provide the structures of 30 nm-diameter nanoparticles bound to each other and to coated hydrophobic surfaces, through the physical contacting of their alkyl coats. This “molecular velcro” has been recently exploited in experiments to direct the aggregation of coated nanoparticles into stable assemblies on electronics platforms. Interaction potentials are extracted from the nano scale simulations and transferred to coarse grained Brownian dynamics simulations that describe multi-nanoparticle aggregation and surface deposition. The simulation results show that the large interaction area between 30 nm nanoparticles provides a strong driving force for assembly of strongly-welded, porous supraparticles under vacuum conditions. Interaction forces are significantly larger than those found in earlier simulations of the aggregation of smaller nanoparticles, indicating that supraparticle assembly using large 30 nm nanoparticles may be kinetically controlled. The porosity programmed into kinetic assembly may potentially benefit emerging applications of nanoparticle assemblies in medicine, in particular the development of nanostructured drug-eluting stent coatings. Future work will involve potential of mean force calculations in a variety of solvents to estimate the porosity obtainable for specific applications.
Cechy publikacji
ORIGINAL_ARTICLE
Inne
System-identifier
491612
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych